Compare the environmental impact of popular AI models. Estimated CO₂e emissions, energy consumption, and overall rankings based on our calibrated environmental model.
Rank | Model | Provider | Parameters | CO₂e per 1M Tokens Input / Output | Energy per 1M Tokens Input / Output | Cost per 1M Tokens Input / Output |
---|---|---|---|---|---|---|
#1 | moonshotai/kimi-vl-a3b-thinking | moonshotai | 0.75B active (3B total) | ~0.00006232 g (±25%)🟢 0.00003116 g/0.00009349 g | ~119.9mWh (±25%) 59.9mWh/179.8mWh | $0.025/$0.10 Avg: $0.062 |
#2 | meta-llama/llama-4-maverick | meta-llama | 4.25B active (17B total) | ~0.00013746 g (±25%)🟢 0.00006873 g/0.0002062 g | ~624.8mWh (±25%) 312.4mWh/937.3mWh | $0.15/$0.60 Avg: $0.375 |
#3 | meta-llama/llama-4-scout | meta-llama | 4.25B active (17B total) | ~0.00013746 g (±25%)🟢 0.00006873 g/0.0002062 g | ~624.8mWh (±25%) 312.4mWh/937.3mWh | $0.08/$0.30 Avg: $0.19 |
#4 | meta-llama/llama-3.1-8b-instruct | meta-llama | 8B | ~0.00022641 g (±25%)🟢 0.00011321 g/0.00033962 g | ~1.0Wh (±25%) 514.6mWh/1.5Wh | $0.015/$0.02 Avg: $0.018 |
#5 | z-ai/glm-4.5 | z-ai | 7B Est. | ~0.00054732 g (±25%)🟢 0.00027366 g/0.00082098 g | ~1.2Wh (±25%) 608.1mWh/1.8Wh | $0.20/$0.80 Avg: $0.50 |
#6 | moonshotai/kimi-k2 | moonshotai | 7B Est. | ~0.00058169 g (±25%)🟢 0.00029085 g/0.00087254 g | ~1.1Wh (±25%) 559.3mWh/1.7Wh | $0.14/$2.49 Avg: $1.315 |
#7 | qwen/qwen3-30b-a3b-instruct-2507 | qwen | 7.5B active (30B total) | ~0.00062324 g (±25%)🟢 0.00031162 g/0.00093486 g | ~1.2Wh (±25%) 599.3mWh/1.8Wh | $0.10/$0.30 Avg: $0.20 |
#8 | openai/gpt-5-nano | openai | 8B Est. | ~0.000960 g (±25%)🟢 0.000480 g/0.00144 g | ~3.4Wh (±25%) 1.7Wh/5.1Wh | $0.05/$0.40 Avg: $0.225 |
#9 | mistralai/ministral-8b | mistralai | 8B | ~0.001955 g (±25%)🟢 0.00097736 g/0.002932 g | ~4.3Wh (±25%) 2.2Wh/6.5Wh | $0.10/$0.10 Avg: $0.10 |
#10 | meta-llama/llama-guard-4-12b | meta-llama | 12B | ~0.0399 g (±25%)🟡 0.020 g/0.0599 g | ~181.5Wh (±25%) 90.7Wh/272.2Wh | $0.18/$0.18 Avg: $0.18 |
#11 | anthropic/claude-3.5-haiku | anthropic | 13B Est. | ~0.0485 g (±25%)🟡 0.0242 g/0.0727 g | ~186.5Wh (±25%) 93.3Wh/279.8Wh | $0.80/$4.00 Avg: $2.40 |
#12 | google/gemini-2.0-flash-001 | 300B Est. | ~0.0961 g (±25%)🟡 0.0481 g/0.1442 g | ~801.2Wh (±25%) 400.6Wh/1201.8Wh | $0.10/$0.40 Avg: $0.25 | |
#13 | openai/o3-mini | openai | 13B Est. | ~0.1284 g (±25%)🟠 0.0642 g/0.1926 g | ~458.5Wh (±25%) 229.2Wh/687.7Wh | $1.10/$4.40 Avg: $2.75 |
#14 | mistralai/mistral-small-3.2-24b-instruct | mistralai | 24B | ~0.1351 g (±25%)🟠 0.0676 g/0.2027 g | ~300.3Wh (±25%) 150.1Wh/450.4Wh | $0.05/$0.10 Avg: $0.075 |
#15 | meta-llama/llama-3.3-70b-instruct | meta-llama | 70B | ~0.163 g (±25%)🟠 0.0815 g/0.2446 g | ~741.1Wh (±25%) 370.5Wh/1111.6Wh | $0.038/$0.12 Avg: $0.079 |
#16 | mistralai/codestral-2508 | mistralai | 22B Est. | ~0.1769 g (±25%)🟠 0.0885 g/0.2654 g | ~393.2Wh (±25%) 196.6Wh/589.8Wh | $0.30/$0.90 Avg: $0.60 |
#17 | openai/gpt-5-mini | openai | 20B Est. | ~0.1975 g (±25%)🟠 0.0988 g/0.2963 g | ~705.4Wh (±25%) 352.7Wh/1058.1Wh | $0.25/$2.00 Avg: $1.125 |
#18 | deepseek/deepseek-chat-v3.1 | deepseek | 37B active (671B total) | ~0.253 g (±25%)🟠 0.1265 g/0.3795 g | ~486.6Wh (±25%) 243.3Wh/729.9Wh | $0.20/$0.80 Avg: $0.50 |
#19 | z-ai/glm-4.5-air | z-ai | 100B Est. | ~0.2667 g (±25%)🟠 0.1333 g/0.400 g | ~592.6Wh (±25%) 296.3Wh/888.9Wh | $0.20/$1.10 Avg: $0.65 |
#20 | anthropic/claude-3.7-sonnet | anthropic | 30B Est. | ~0.2798 g (±25%)🟠 0.1399 g/0.4196 g | ~1076.0Wh (±25%) 538.0Wh/1614.0Wh | $3.00/$15.00 Avg: $9.00 |
#21 | openai/gpt-5-chat | openai | 175B Est. | ~0.2865 g (±25%)🟠 0.1432 g/0.4297 g | ~1023.2Wh (±25%) 511.6Wh/1534.8Wh | $1.25/$10.00 Avg: $5.625 |
#22 | qwen/qwen3-coder | qwen | 120B active (480B total) | ~0.3401 g (±25%)🟠 0.1701 g/0.5102 g | ~654.1Wh (±25%) 327.0Wh/981.1Wh | $0.20/$0.80 Avg: $0.50 |
#23 | google/gemini-2.5-flash | 300B Est. | ~0.3434 g (±25%)🟠 0.1717 g/0.5151 g | ~2861.5Wh (±25%) 1430.8Wh/4292.3Wh | $0.30/$2.50 Avg: $1.40 | |
#24 | google/gemini-2.5-pro | 300B Est. | ~0.3434 g (±25%)🟠 0.1717 g/0.5151 g | ~2861.5Wh (±25%) 1430.8Wh/4292.3Wh | $1.25/$10.00 Avg: $5.625 | |
#25 | qwen/qwen3-235b-a22b-2507 | qwen | 58.75B active (235B total) | ~0.4018 g (±25%)🟠 0.2009 g/0.6026 g | ~772.6Wh (±25%) 386.3Wh/1158.9Wh | $0.078/$0.312 Avg: $0.195 |
#26 | qwen/qwen3-235b-a22b-thinking-2507 | qwen | 58.75B active (235B total) | ~0.4018 g (±25%)🟠 0.2009 g/0.6026 g | ~772.6Wh (±25%) 386.3Wh/1158.9Wh | $0.078/$0.312 Avg: $0.195 |
#27 | baidu/ernie-4.5-300b-a47b | baidu | 75B active (300B total) | ~0.4826 g (±25%)🟠 0.2413 g/0.7239 g | ~1072.4Wh (±25%) 536.2Wh/1608.6Wh | $0.28/$1.10 Avg: $0.69 |
#28 | x-ai/grok-3-mini | x-ai | 30B Est. | ~0.6032 g (±25%)🟠 0.3016 g/0.9048 g | ~1340.5Wh (±25%) 670.3Wh/2010.8Wh | $0.30/$0.50 Avg: $0.40 |
#29 | x-ai/grok-4 | x-ai | 30B Est. | ~0.6032 g (±25%)🟠 0.3016 g/0.9048 g | ~1340.5Wh (±25%) 670.3Wh/2010.8Wh | $3.00/$15.00 Avg: $9.00 |
#30 | anthropic/claude-opus-4 | anthropic | 400B Est. | ~0.6184 g (±25%)🟠 0.3092 g/0.9276 g | ~2378.4Wh (±25%) 1189.2Wh/3567.6Wh | $15.00/$75.00 Avg: $45.00 |
#31 | x-ai/grok-3 | x-ai | 200B Est. | ~0.6667 g (±25%)🟠 0.3333 g/1.0 g | ~1481.5Wh (±25%) 740.8Wh/2222.3Wh | $3.00/$15.00 Avg: $9.00 |
#32 | anthropic/claude-opus-4.1 | anthropic | 175B Est. | ~0.6764 g (±25%)🟠 0.3382 g/1.01 g | ~2601.4Wh (±25%) 1300.7Wh/3902.1Wh | $15.00/$75.00 Avg: $45.00 |
#33 | openai/o3-pro | openai | 175B Est. | ~0.7162 g (±25%)🟠 0.3581 g/1.07 g | ~2558.0Wh (±25%) 1279.0Wh/3837.0Wh | $20.00/$80.00 Avg: $50.00 |
#34 | anthropic/claude-sonnet-4 | anthropic | 200B Est. | ~0.773 g (±25%)🟠 0.3865 g/1.16 g | ~2973.0Wh (±25%) 1486.5Wh/4459.5Wh | $3.00/$15.00 Avg: $9.00 |
#35 | openai/gpt-5 | openai | 400B Est. | ~1.64 g (±25%)🔴 0.8186 g/2.46 g | ~5846.9Wh (±25%) 2923.4Wh/8770.3Wh | $1.25/$10.00 Avg: $5.625 |
#36 | mistralai/mistral-medium-3.1 | mistralai | 500B Est. | ~4.17 g (±25%)🔴 2.08 g/6.25 g | ~9259.7Wh (±25%) 4629.8Wh/13889.5Wh | $0.40/$2.00 Avg: $1.20 |
Help us make your environmental data more accurate. We're constantly working to improve our measurements and would love to collaborate with you to ensure we're representing your models fairly and accurately.
These environmental impact estimates are based on our calibrated models using publicly available data and research. Actual emissions may vary significantly based on hardware configuration, data center efficiency, energy sources, and usage patterns. We encourage providers to share more accurate data to improve these estimates. This data is provided for informational purposes and should not be considered as definitive environmental impact assessments.